实数虚数,实数和虚数的分别?
实数虚数,实数和虚数的分别?
平方为正数的是实数,平方为负数的是虚数。实数,是有理数和无理数的总称。虚数这个名词是17世纪著名数学家笛卡尔创立的。
实数和虚数的区别
一、定义不同
1、实数
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。
在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
2、虚数
在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。
实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。
二、起源不同
1、实数
在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。1871年,德国数学家康托尔第一次提出了实数的严格定义。
2、虚数
虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。
人们发现即使使用全部的有理数和无理数,也不能解决代数方程的求解问题。像x²+1=0这样最简单的二次方程,在实数范围内没有解。
12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负数平方根的存在。
纯虚数和实数哪个多?
从造数的角度来看,一样多。
复数通式z=a+bi。当a=0,b≠0时,表示纯虚数,这里b可以取无数个实数值;当a≠0,b=0时,表示实数,这里a可以取无数个实数值。故二者一样多。
复数的三角形式z=r(cosa+isina)。当a的终边在y轴上时,对任意r≠0均有z=ri一一对应,此时表示纯虚数;表示实数时同理,但a的终边在x轴上,z=r。故二者一样多。
从定义上看,实数要比纯虚数多一个,即0。
我们取实数a<0,则其对应两个实数:a及其相反数-a;对应两个纯虚数:z=正负根号a,在这一条件下二者数目相等。但对于实数0,其只能对应实数0,故实数要比纯虚数多一个0。
高中水平,如有拙笔,敬请指摘。
关于虚数实数距离计算的公式?
对于加减法,实数和实数算,虚数和虚数算对于乘法,(a+bi)(c+di)=(ac-bd)+(ad+bc)i,即i^2=-1对于除法,先将分母实数化,即分母(a+bi)(a-bi)=a^2+b^,分子也乘以(a-bi)计算实数与虚数的转换公式?
定义:虚数是指平方是负数的数
虚数和实数是复数的两大部分
计算:规定i^2=-1
实数与i进行四则运算时,原有的运算仍让成立
因此如-2=2*i^2
直观上来看根号2*i就是根号-2的表示,但是【注意】不能用根号里带符号这种表示。
实数和虚数的分别?
一、定义不同
1、实数
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。
在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
2、虚数
在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。
实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。
二、起源不同
1、实数
在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。1871年,德国数学家康托尔第一次提出了实数的严格定义。
2、虚数
虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。
人们发现即使使用全部的有理数和无理数,也不能解决代数方程的求解问题。像x²+1=0这样最简单的二次方程,在实数范围内没有解。
12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负数平方根的存在。